Elliptic curves of rank two and generalised Kato classes
نویسندگان
چکیده
Heegner points play an outstanding role in the study of the Birch and Swinnerton-Dyer conjecture, providing canonical Mordell–Weil generators whose heights encode first derivatives of the associated Hasse–Weil L-series. Yet the fruitful connection between Heegner points and L-series also accounts for their main limitation, namely that they are torsion in (analytic) rank> 1. This partly expository article discusses the generalised Kato classes introduced in Bertolini et al. (J Algebr Geom 24:569–604, 2015) and Darmon and Rotger (J AMS 2016), stressing their analogy with Heegner points but explaining why they are expected to give non-trivial, canonical elements of the idoneous Selmer group in settings where the classical L-function (of Hasse–Weil–Artin type) that governs their behaviour has a double zero at the centre. The generalised Kato class denoted κ (f, g, h) is associated to a triple (f, g, h) consisting of an eigenform f of weight two and classical p-stabilised eigenforms g and h of weight one, corresponding to odd two-dimensional Artin representations Vg and Vh of Gal (H/Q) with p-adic coefficients for a suitable number field H. This class is germane to the Birch and Swinnerton-Dyer conjecture over H for the modular abelian variety E overQ attached to f . One of the main results of Bertolini et al. (2015) and Darmon and Rotger (J AMS 2016) is that κ (f, g, h) lies in the pro-p Selmer group of E over H precisely when L(E, Vgh, 1) = 0, where L(E, Vgh, s) is the L-function of E twisted by Vgh := Vg ⊗ Vh. In the setting of interest, parity considerations imply that L(E, Vgh, s) vanishes to even order at s = 1, and the Selmer class κ (f, g, h) is expected to be trivial when ords=1L(E, Vgh, s) > 2. The main new contribution of this article is a conjecture expressing κ (f, g, h) as a canonical point in (E(H)⊗ Vgh)Q when ords=1L(E, Vgh, s) = 2. This conjecture strengthens and refines the main conjecture of Darmon et al. (Forum Math Pi 3:e8, 2015) and supplies a framework for understanding the results of Darmon et al. (2015), Bertolini et al. (2015) and Darmon and Rotger (J AMS 2016).
منابع مشابه
Complete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملOn the rank of certain parametrized elliptic curves
In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.
متن کاملOn Silverman's conjecture for a family of elliptic curves
Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملOn the Elliptic Curves of the Form $y^2 = x^3 − pqx$
By the Mordell- Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. This paper studies the rank of the family Epq:y2=x3-pqx of elliptic curves, where p and q are distinct primes. We give infinite families of elliptic curves of the form y2=x3-pqx with rank two, three and four, assuming a conjecture of Schinzel ...
متن کامل